|
|
Last edit: January 20, 2019 Statics and Influence Functions - from a Modern Perspective by Friedel Hartmann and Peter Jahn published by Springer-Verlag Berlin Heidelberg New York in March 2017 From the back cover This book focuses on the foundation of structural analysis and the prominent role influence functions play in finite element analysis. It proves that influence functions play a fundamental role in the finite element analysis of structures and in the field of linear computational mechanics as a whole. It also strives to add new and important insights into modern structural analysis and into computational mechanics by establishing the central role of influence functions for the numerical analysis and to lay a new foundation for the energy and variational principles of mechanics. Structural Analysis with Finite Elements 2nd ed. by Friedel Hartmann and Casimir Katz published by Springer-Verlag Berlin Heidelberg New York in February 2007 About the book It develops the foundations and applications of the finite element method in structural analysis in a language which is familiar to structural engineers. It provides a new foundation for the finite element method that enables structural engineers to address key questions that arise in computer modeling of structures with finite elements. It uncovers the structural mechanics behind the finite element method. It explores and explains issues such as: Why finite element results are only an approximation. Why support reactions are relatively accurate. Why stresses at midpoints are more reliable. Why averaging the stresses sometimes may not help. Why the equilibrium conditions are violated. An additional chapter treats the boundary element method, and related software is available at this side. For a continuation of the ideas developed in this book see the title Green's Functions and Finite Elements by Friedel Hartmann published by Springer-Verlag Berlin Heidelberg New York in March 2012 About the book Key words: Green's functions, influence functions, finite elements, stiffness matrices, duality, goal-oriented refinement, nonlinear problems p-method, model adaptivity, error analysis, solid mechanics, frames, trusses Green's functions are the physical basis functions of a problem domain and in the finite element method these functions are approximated with nodal basis functions. These discrete Green's functions produce the output the engineer sees on the screen. This book is devoted to the study of these Green's functions and how finite element codes can best approximate these functions, an issue which is central for the quality of engineering analysis with finite elements as testified by the fact that the discretization error, the modeling error as well as the pollution error strongly depend on the error in the Green's functions. The success of goal-oriented refinement techniques is proof of the close connection between Green's functions and finite elements and also questions of verification as well as validation all hinge on the same issue: the choice of the correct Green's function (validation) and the best possible approximation of this function (verification). The book follows this path by a detailed analysis of the engineering and numerical aspects of Green's functions in the finite element context and in particular how questions of modeling the mechanics in a problem with finite elements must focus on the choice and the approx- imability of the Green's functions. Many engineering examples illustrate the basic concepts and the relevance of the results for practical engineering analysis with finite elements. |
|